

How to setup a .NET Development Tree
Mike Roberts – ThoughtWorks. - http://mikeroberts.thoughtworks.net/blog/

In my career I've setup quite a few development trees for .NET projects.
What do I mean by a 'development tree'?

• It is a directory structure
• containing:

o source files
o tools and dependencies
o references to external tools and dependencies

• checked into source control
• that is atomically integratable
• to produce a set of artifacts

A good development tree should:

• be easily integratable on new environments
• require little maintainance
• but be easily maintainable when it does require maintenance
• support, but not hamper, developer productivity
• have consistent behaviour

These are rather qualitative ideals, but give some direction about where we
want to head. In this article I show how to develop a good 'boilerplate'
development tree structure for .NET projects that other people can use.

Part 1 - Setting up Source Control

So, lets start building our development tree. Feel free to join in. :)

The first thing you need is a Source Control environment. This may sound
simple, but even at this stage I have seen some strange things happen on
projects.

Here are some 'must haves':

• Your source control server must be fast. Your developers are often
going to be waiting for your source control to do things, so don't
scrimp on hardware. Specifically:

o Do use decent, modern, hardware.
o Don't use network shares to store files - in my experience it

will slow your source control by about 10x. Instead invest in
some locally redundant disks (RAID 5 is OK, RAID 0+1 is better),
and a backup strategy.

o Don't put your Source Control server on the other side of the
world from your team. Keep it local, and make sure your
network isn't getting bogged down. Obviously with distributed

teams this may not be possible, but if your team isn't
distributed, don't distribute your hardware.

• Don't be tight on hard disk space. Get about as much as you think you
might need in 3-5 years. Disk space really is cheap and having lots of
it means that people can worry about producing software, and not
about whether they are going over quota.

• Give developers write access to the code they need to work on. If you
trust them to write code, you should trust them to be able to edit
their own work without having to go through slow processes. Other
team's code may be a different matter.

• Put each development tree in its own folder under source control -
don't try and 'save' work or space by merging them. It really will save
you headaches and time. See the 'hard disk space' point.

• Make sure new source control clients can be set up fast and correctly.
Document what needs to be done for each project on a Wiki. If your
Source Control Client setup takes over 10 minutes, or is more than a
page of manual work, change it. If necessary throw away your current
Source Control software and start again.

• Make sure basic source control operations are quick, simple and well
understood. All developers should be easily able to do all of the
following operations - if they don't know how or if these processes are
cumbersome or slow to execute, then change them (again, if
necessary consider changing your Source Control software)

o Check out from nothing
o Get updates
o Find differences between server and local versions
o Revert local versions
o Commit changes

• Your Source Control system must be consistently trustworthy - if
developers are losing changes or files are becoming corrupted, fix it.

• Your Source Control server should support the following more
advanced operations, which developers should be able to perform if
necessary:

o Labelling (tagging)
o Branching (parallel, independent, development of integratable

code lines)
o Automation (be driven by a process, not just a person)

The above points I believe are all necessary for an effective development
project. For an 'excellent' project I recommend the following:

• A good source control server can happily accommodate 100
developers. I recommend the following kind of system:

o UNIX/Linux based - Most good Source Control software is
written primarily for a UNIX/Linux environment so don't
support edge cases.

o At least dual-CPU (I like the idea of one CPU being able to do
work, and one doing I/O, but I'm sure that's rather a simplistic
model these days)

o At least 1GB RAM - if your often-accessed source is already
cached you should get a speed up.

o Don't run anything else on the machine apart from a Source
Control server. If you do (e.g. source control reporting), invest
in extra processors and monitor what impact those extra
applications are having.

o Use 1 disk set for applications and checkpoints/journals, and a
separate disk set for your actual data.

• If cash is fairly easily available in your organisation, use Perforce. I've

been using it on an off for 4 years now and it never ceases to amaze
me how fast and stable it is. It also requires almost zero
maintenance.

• Otherwise use Subversion. It is free, and better than any other SCM
system I've tried apart from Perforce.

• If you are using Visual SourceSafe, I strongly urge you to migrate away
from it. It is renowned for not being scalable and is also prone to file
corruption. If you are not experienced with UNIX, or any other SCM
tool apart from VSS, I have heard good things about SourceGear
Vault.

• Use clean and simple setups for your 'meta' trees. In Perforce, putting
all projects in one 'depot' is perfectly reasonable, and use similar
ideas for other tools.

If after reading all of this you are thinking 'Nice ideas, but we don't have the
time or money to do any of this', then think how much it would really cost
you to (say) invest in a new Linux server and Subversion, and how much
money you are losing through lack of productivity. Its also a lot simpler than
you think. Why not try out Subversion for half a day with a good book?

In the next part we'll start looking at some code.

Part 2 - Setting up the Solution

In Part 1 we looked at making sure we had our Source Control story straight.
With that sorted out, we can start creating some files to put in it.

First some terminology, I'm going to use the word 'Project' to define the
thing that all the files in our development tree go to make up. It is more
than just a Visual Studio Project. I'm going to use an example project called
Sycamore.

Next, I'm going to assume you are using Visual Studio 2003. Pretty much
everything we are going to look at will work without Visual Studio, but I'll
assume you have it anyway.

First, we want to make a new folder. We'll put it in our meta root - a place
where you check projects out from Source Control. On my machine, this
folder is C:\devel but on your machine (and anyone else's) it might be
different. You should never assume the concrete location of meta roots.

Call the new folder pretty much the same thing as your project. I say 'pretty
much' since I like to remove capitals and spaces, but its really up to you.
Our folder will be called sycamore. It is the root of our development tree.
All source code for this project will exist somewhere under this root. Any
tool or library dependencies that exist outside the scope of this root will
have to be managed carefully. There will be no source under this root that
belongs to any other project.

To start with we are just going to create a Visual Studio-compilable
'solution'. A solution contains source code, so we're going to create a sub-
folder of sycamore called src. We will have other sub-directories later, but
they will contain other things, so its good to separate the source out into its
own location.

In src we create our new Visual Studio solution. To make things easy, I'm
going to call it Sycamore. Unfortunately, Visual Studio doesn't make it easy
- it wants to put it in a another sub-folder called Sycamore so once I've
created an empty solution I'll close it down and move the Solution.sln file
into the src folder. We can delete the extra Sycamore folder that Visual
Studio created for us.

Next to create some VS Projects. In this part, I'm going to keep it simple -
just a single command line application in one project. We'll be creating
some more projects later. I like projects to have their own folder under src.
We never merge VS projects into one folder and never put their 'project
roots' anywhere other than src.

In Visual Studio I create a C# Console Application called SycamoreConsole.
Its location on my machine is C:\devel\sycamore\src, but the location on

your's will depend on your meta root. VS creates the project for us and
creates a class called Class1.

We're also going to change some of the project properties. First the
Assembly Name. In later parts we'll talk about dll names, but for console
applications, pick something short and obvious. We're going to call our's
sycamore. For the Default Namespace, I like to use the convention
OrganisationName.ProjectName.VSProjectName, so in our case I'm going
to use the Namespace SherwoodForest.Sycamore.SycamoreConsole. Save
these properties and go back to the Class1 window.

First, set the namespace to be as you just set in the Project properties. Now
rename the class to something sensible (we'll use HelloWorld for now), and
don't forget to rename the file to match. (I recommend you use ReSharper
which will do the file rename for you.) I also like to delete all the
unnecessary comments. Sticking with tradition we'll add the statement
Console.WriteLine("Hello World"); to the main method. Compile, run and
make sure everything does as expected.

We're done for now. We may be making baby steps, but we are already
seeing some defintions and patterns emerge:

• The root is the upper most point of our development tree.
• All files belonging to a project exist under the root.
• No files belonging to any other project exist under the root.
• The root itself is resident in a meta root which can change from

machine to machine.
• All source code resides under a src sub-folder.
• The project .sln file is saved in the src folder.
• All Visual Studio Projects exist in their own sub-folders under the src

folder.
• Visual Studio Project folders are atomic, and should be named

identically to the project they contain.
• The default namespace for a Visual Studio project should be

OrganisationName.ProjectName.VSProjectName.

In the next part we'll look at what we have to do to get this project into
Source Control.

Part 3 - Adding files to Source Control

A quick recap. So far we have made sure we have a good source control
environment and have created a Visual Studio Solution with a well
structured folder setup. But we haven't checked those files into our Source
Control server yet - we'd better fix that.

Your Source Control administrator will probably tell you where to make your
initial check-in of your new project, but I suggest you think about simplicity
for a moment:

• If you're using Perforce, consider using 1 depot as the 'server side'
equivalent of your meta root. You don't lose any security options,
and you gain in that developers may already have this depot mapped
in their client so won't need to change any source control
configuration.

• If you're using Subversion, just use one repository for all the projects
in your department (see here for a good explanation why.) Use a new
directory for your new project (and probably check it in to a 'trunk'
sub-directory, but you can always move it later.)

• If you're using CVS, its fairly standard to create a new CVSROOT for
each project, and I would recommend it. Note that you'll have to
setup any extra permissions and triggers that you use as standard. I've
seen organisations make good use of GForge to manage their CVS
server.

• For other Source Control systems, follow similar guidelines

Once you've figured out the source control location of your new project,
don't be too hasty about checking in. Its worth taking a moment to decide
what you actually want to check in. Files you don't want to include are:

• Build output folders - don't check in the bin or obj sub-folders of your
VS project folders

• Any Solution .suo or VS Project .user files - these are user and
environment specific and should not be checked in

• Any Resharper, or other third-party tool output. (Resharper generates
a SolutionName.resharperoptions file and a _ReSharper.SolutionName
folder, neither of which you need to save)

Not checking these files in is good, but making sure no-one else ever checks
them in later by mistake is even better. CVS and Subversion both offer such
functionality through .cvsignore files and svn:ignore properties respectively.
With Perforce, you can use Triggers, but this is not as elegant a solution.

Moving back to our Sycamore example, I'm going to use a Subversion server
to check in our work. First of all I delete all the temporary files we
discussed above. Then I'm going to use the svn command line tool, but you
could use TortoiseSVN or AnkhSVN instead. My command line looks like:

c:\devel\sycamore>svn import -m "Initial Sycamore Import" .
file:///c:/svn-repos/sycamore/trunk

Once the intial checkin is complete I'm going to delete my 'sycamore' folder
and then checkout from Subversion the folder we just imported to get a
local versioned folder. After that I reload the solution in Visual Studio and
compile. This recreates the temporary files.

I then set the svn:ignore value for src to be *.suo, ReSharper.Sycamore and
*.resharperoptions. The svn:ignore for VS Project dirs should be set to
*.user, bin and obj. You should be able to test you've captured everything by
doing a svn status in the root folder and only seeing output for merging the
properties of the src and VS Project directories. Make sure to commit these
property updates.

To see exactly the state of Sycamore as it currently stands, download a zip
file from here.

To summarise this part:

• Pick a Source Control location that is simple for everyone to use.
• When checking in your project directory, make sure not to include

build artfacts or temporary environment files.
• If possible, configure your Source Control to make sure no-one can

check in such files in the future.

In the next part we'll be adding an automated build for our project using
NAnt.

Part 4 - Adding an Automated Build

At this point we have a basic Visual Studio solution checked into Source
Control. Now its time to automate how we build this solution.

Most of the time .NET developers will work solely within the Visual Studio
environment, compiling their solution with the in-built compiler, and
running tests using TestDriven.NET (more on testing to come...). But relying
solely on Visual Studio as a way to produce build artifacts and run your tests
isn't enough. For instance:

• How do you run scheduled or triggered builds for your project? Using
the command line version of Visual Studio (devenv.com) provides you
with only basic command line features.

• Visual Studio's 'pre-' and 'post-' build events provide some build
scripting beyond just compiling code, but such scripting is limited in
scope and expressiveness.

The current 'de-facto' automated build tool for .NET projects is NAnt. NAnt
is based on the Java build tool Ant and has similar strengths (integration
with lots of useful tools, few dependencies) and also its weaknesses (being
defined in XML means large build scripts quickly get hard to maintain). .NET
2 and Visual Studio 2005 will come with their own build scripting tool,
MSBuild, which is very similar to NAnt. Investing in NAnt now should give
you a build script you can easily convert to MSBuild later, should you want
to.

NAnt is a tool that can be installed on every developers machine. However, I
like to check NAnt into the project tree for some simple reasons:

• It saves the manual steps of everyone copying it to their machine,
and installing it. (Remember - manual steps take time and are a
possible point of error.)

• NAnt changes between versions, and such changes can effect the
behaviour of a build. Making sure that everyone has the same version
of NAnt when everyone is manually installing it can be tricky, and is
time consuming when you want to upgrade the version of NAnt
everyone uses.

• Many projects use their own 'custom' NAnt tasks. Storing these in
source control along with the project's own version of NAnt makes
distribution to team members painless.

• It is not a large tool, so the overhead of storing it in source control
should not be a problem.

To add NAnt to your project tree, first download and unpack its binary zip
file (I'm going to use NAnt 0.85 RC1, available here.) Then, copy the bin
folder to your project directory. I like to put all build-time tools in a sub-
folder of my project root called tools, and then put the contents of NAnt's

bin folder in tools\nant. Before going any further, commit NAnt to your
project's source control, making sure to include in the commit message the
version of NAnt you are using. Later on, this will help you decide whether
you want to upgrade to a new version.

You tell NAnt what to do using a build script. The standard for naming NAnt
build scripts is ProjectName.build. The build script is a gateway into our
project, so I like to save it in the root folder. You can edit your build script
with Visual Studio - create it as a 'solution item' (Right click on the solution
icon in Solution Explorer and choose Add new item... or Add existing
item...). If you follow the instructions here and here you'll even get
IntelliSense! (Thanks to Serge van de Oever and Craig Boland for writing it
up.)

Our first NAnt build script will just compile our project. There are several
ways to do this, and I'm going to use the <solution> task:

<?xml version="1.0" ?>
<project name="nant" default="compile"
xmlns="http://nant.sf.net/schemas/nant.xsd">
 <target name="compile">
 <solution solutionfile="src\Sycamore.sln"
configuration="debug" />
 </target>
</project>

I like to use the <solution> task for a couple of reasons:

• For developers to work in Visual Studio we need to define how to
compile our project in Visual Studio using its 'references' system.
<solution> lets us re-use all this work in 1 line of script. If we were to
use the <csc> task instead we would need to maintain a separate set
of compile definitions (which would be time-consuming and might not
match the Solution / VS Project setup).

• Using <solution> rather than the <exec> task calling out to

devenv.com is less resource intensive, gives more appropriate
feedback and also allows us to run builds on machines without Visual
Studio installed (it just needs the .NET SDK.) If you have a problem
using <solution> you can always quickly replace it with an <exec> to
devenv.com

To run your build, save the build script, open a command prompt and
change to your project's root folder. Then just enter tools\nant\NAnt. You
should see output like:

NAnt 0.85 (Build 0.85.1793.0; rc1; 28/11/2004)
Copyright (C) 2001-2004 Gerry Shaw
http://nant.sourceforge.net
Buildfile: file:///c:/devel/sycamore/Sycamore.build
Target(s) specified: compile

compile:
[solution] Starting solution build.
[solution] Building 'SycamoreConsole' [debug] ...

BUILD SUCCEEDED

Total time: 0.2 seconds.

Woohoo - a successful build! We have something new, that works, so submit
the build script (and your changes to the Solution file that include the build
script) to source control.

The current state of Sycamore is available here.

To summarise this part:

• Add an automated build system to your project.
• Use NAnt to automate your .NET 1.1 and earlier projects.
• Check the NAnt distribution into your development tree.
• Create a build script and save it in your development tree.
• Use the <solution> task to compile your project.

In the next part we'll be adding some more features to our automated build.

Part 5 - Extending the Automated Build

In the last part we started using NAnt to automate a build for our project. In
this part we'll add some more build functionality.

When we added the compile target we used the <solution> task to compile
our solution. However, we also specified which 'Build Configuration' to use.
Build Configurations are a Visual Studio feature that allow you to build your
project in different ways. The most common differences are between
'Debug' and 'Release' (2 configurations that Visual Studio always creates for
you.) With a Debug build, the Visual Studio compiler is configured to create
the .pdb files we use for debugging (it gives us line numbers in exception
stack traces, that kind of thing.) The 'Release' configuration doesn't have
these files generated, but it does produce assemblies more geared towards
production than development.

However, there are a whole bunch of other things you can configure for
different build configurations. Right-click on a project in Visual Studio,
select Properties, then look at everything that appears under 'Configuration
Properties' - all of those items can change for different Build Configurations.
We're interested in the 'Output Path' property, and I'll explain why.

When we tell NAnt to compile the Debug Build Configuration of our solution,
it tries to invoke the C# compiler to produce all the files that appear under
the bin\Debug folder for each VS Project. There's a problem with this though
- if we already have the Solution open in Visual Studio, VS will have locks on
those files once they reach a certain size. That means that our NAnt compile
will fail since it can't overwrite the assemblies. Anyway, it would be cleaner
if we could separate out our 'automated' build from our 'interactive' build.

Thankfully, Build Configurations let us do this and still use the <solution>
task. We do this by creating a new Build Configuration which we will just
use for automated builds, and change where it outputs its files to.

To do this for Sycamore, I open up Visual Studio's 'Configuration Manager'
(right click on the Solution, choose 'Configuration Manager'), and create a
new configuration (open the drop-down menu, select '<New...>'). I'm going
to call the new configuration AutomatedDebug and copy settings from the
'Debug' configuration (leave the 'create new project configuration(s)' box
checked.) Close the dialog, and then bring up the properties for
'SycamoreConsole'. Select the 'Build' 'Configuration Properties' section, and
make sure 'AutomatedDebug' is selected in the Configuration drop-down.
Select the 'Output Path' box and change its value to
'..\..\build\Debug\SycamoreConsole'. Switch Visual Studio back to the normal
'Debug' configuration which we use for interactive builds.

Finally, edit the build script, and change the 'configuration' argument of the
<solution> task to be AutomatedDebug. It should now look like this:

<target name="compile">
 <solution solutionfile="src\Sycamore.sln"
configuration="AutomatedDebug" />
</target>

So what have we actually done here? If you run NAnt, you should see the
following lines in your build output:

compile:

 [solution] Starting solution build.

 [solution] Building 'SycamoreConsole' [AutomatedDebug] ...

This tells us that NAnt is using the new Build Configuration. Now, look in the
build\Debug\SycamoreConsole folder - you should see our compiled .exe file
(and a .pdb file since we are compiling with debug options.)

That tells us what is happening, but why have we put these files in this
directory? We use the build folder as another of our 'top level' project
folders. It will contain all the build artifacts (assemblies, test reports, etc.)
that we produce in the automated build. It will not contain any files that
aren't generated by the build, so we don't need to check it into Source
Control, and we can safely delete it whenever we want. Under build we will
have a number of sub-folders, and so far we created one called Debug that
will contain all of our Debug compilation artifacts. We put the artifacts for
each VS Project in its own folder, with the same name as the VS Project it
belongs to.

I said we could safely delete this folder, so let's add another NAnt target
that will do this:

<target name="clean">
 <delete dir="build" if="${directory::exists('build')}"/>
</target>

I also said we didn't need to check the build folder into Source Control, so
we can also add it to our list of excluded files. With Subversion, I do this by
editting the svn:ignore property of the project root folder.

Finally for this part, we're going to create a batch file that developers can
use to kick off the build. Its very simple, having just the following line:

@tools\nant\NAnt.exe -buildfile:Sycamore.build %*

I like calling this file 'go.bat' since the targets in the build script tend to be

'action' type words. Since its closely associated with the build script, put it
in the project root. Note that we specify which build script to use - change
this for your project. To use this file, just pass the target to run as an
option, so to delete the build folder, just enter go clean.

Note that this batch file really is just meant as a bootstrap for convenience.
I've seen plenty of projects use a combination of batch files and NAnt / Ant
scripts to configure a build system. This is a bad idea for several reasons:

• Batch files are significantly less manageable or powerful than NAnt,
and tend to get very 'hacky' very quickly.

• Your build behaviour really is one distinct concept and NAnt can
handle all of it - splitting it across technologies isn't necessary.

• Don't go down the road of having multiple batch files to launch builds
for different environments. I'm yet to see a project that managed to
pull this off in a clean, manageable way. Apart from anything else it
is redundancy, and introduces more manual work and possiblities for
error. Instead, use logic in your NAnt script to use different property
values for different environments (hopefully I'll get on to build
configuration and refactoring concepts in the future.)

If you run your default target, it should still be successful. If you have all
your ignored files and directories setup correctly you should have 4 files to
commit - the build script, the build script launcher (go.bat), the solution,
and the VS Project for Sycamore Console. I'm going to check in these
changes and call it a day for this part.

The current state of Sycamore is available here.

To summarise this part:

• Use a top-level, transient, folder called build as the target folder of
your automated build.

• Create a new Visual Studio Build Configuration for your automated
NAnt Builds. This Build Configuration should output to build.

• Setup a clean target to delete your transient files.
• Create a simple build bootstrap batch file.
• Don't put any kind of build logic in this build bootstrap - leave that all

in the NAnt build script.

In the next part we'll start to add some unit tests.

Part 6 - Adding Unit Tests

By now we have some source code checked in to our Source Control server.
Its got a structured folder hierarchy and we're being careful about how we
check specific files in (and ignore others). We're combining Visual Studio and
NAnt to have a simple yet powerful automated build that works closely with
the changes we make during interactive development.

So far though we only have 1 source file and shockingly no tests. We need to
change this.

To do this we're going to create 2 new assemblies - one application DLL, and
one DLL for unit tests. .NET won't allow you to use .exe assemblies as
references for other projects, so a unit test DLL can only reference another
DLL. Its slightly off-topic but because of this reason I try to keep my .exe
projects as small as possible (because any classes in them can't be unit
tested) and have nearly all code in a DLL.

So let's create our new Application DLL. I'm going to call it Core. Following
the conventions we set down in part 2, the VS Project Folder is stored in src
and we change the default namespace to SherwoodForest.Sycamore.Core.
Before closing the Project Properties window though, there are 2 more
things to change.

Firstly, for DLLs I like to use the naming convention that the Assembly has
the same name as the default namespace. Also, following what we did in
the previous part, create an 'AutomatedDebug' configuration, based on the
'Debug' Configuration, except with the output path of
..\..\build\Debug\Core. Make sure your Solution build configurations are all
mapped correctly. We won't need the 'Class1' which VS automatically
creates, so delete it.

We follow exactly the same procedure for our Unit Test DLL, giving the VS
Project the (not particularly original, nevertheless informative) name of
UnitTests. Save everything and make sure you can compile in Visual Studio
and using your build script.

Before we write a test, we need to setup our project with NUnit. There's a
few hoops to go through here but we only have to do it once for our project.
Firstly, download NUnit - I'm going to be using NUnit 2.2.2 for this example.
Download the binary zip file, not the MSI. While its downloading, open up
your Global Assembly Cache (or GAC) - it will be in C:\Windows\Assembly, or
something similar. Look to see if you have any NUnit assmblies in it. If you
do, try to get rid of them by uninstalling any previous versions of NUnit from
your computer.

Why are we worrying about not using the GAC and MSI's? Well, for pretty
much exactly the reasons as we specified for NAnt, we want to use NUnit
from our development tree . The problem is that if we have any NUnit

assemblies in the GAC, they will take priority over the NUnit in our
development tree. We could go through being explicit about the versions of
NUnit each assembly requries, but that's a lot of hassle. Its easier just not to
make NUnit a system wide tool, and this means getting it out of the GAC.
(Mike Two, one of the NUnit authors, is probably going to shoot me for
suggesting all of this. If you want to make NUnit a system tool then that
will work too, you just have a few more hoops to jump through.)

By now your NUnit download should be complete. Extract it, take the bin
folder and put in next to the nant folder in your project's tools folder.
Rename it to nunit.

To create test fixtures in our UnitTests VS Project, we need to reference
the nunit.framework assembly. This introduces a new concept - that of third
party code dependencies. To implement these, I like to have a new top-
level folder in my project root called lib. Do this in your project and copy
the nunit.framework.dll file from the NUnit distribution to the new folder.
Once you've done that, add lib\nunit.framework.dll as a Reference to your
UnitTests project.

Because of the previous step we now have the same file
(nunit.framework.dll) copied twice in our development tree. Its worth doing
this because we have a clear separation between code dependencies (in
the lib folder) and build time tools (in the tools folder). We could delete
the entire tools folder and the solution would still compile in Visual Studio.
This is an example of making things clean and simple. It uses more disk
space, but remember what we said back in Part 1 about that?

So finally we can actually write a test! For Sycamore, I'm going to add the
following as a file called TreeRecogniserTest.cs to my UnitTests project:

using NUnit.Framework;
using SherwoodForest.Sycamore.Core;

namespace SherwoodForest.Sycamore.UnitTests
{
 [TestFixture]
 public class TreeRecogniserTest
 {
 [Test]
 public void ShouldRecogniseLarchAs1()
 {
 TreeRecogniser recogniser = new TreeRecogniser();
 Assert.AreEqual(1, recogniser.Recognise("Larch"));
 }
 }
}

To implement this, I add Core as a Project Reference to UnitTests and
create a new class in Core called TreeRecogniser:

namespace SherwoodForest.Sycamore.Core
{
 public class TreeRecogniser
 {
 public int Recognise(string treeName)
 {
 if (treeName == "Larch")
 {
 return 1;
 }
 else
 {
 return 0;
 }
 }
 }
}

I can then run this test by using TestDriven.NET within the IDE, or by using
the NUnit GUI and pointing it at
src\UnitTests\bin\Debug\SherwoodForest.Sycamore.UnitTests.dll. The tests
should pass in either case.

If we run our automated NAnt build, everything should compile OK, and you
should be able to see each of the VS Projects compiling in their
AutomatedDebug Build Configuration. The tests aren't run yet, but that's
what we'll be looking at next time. Even so, we are still at a check-in point.
We have 2 new project folders to add, but remember the exclusion rules
(*.user, bin and obj). Being a Subversion command-line user, I like to use
the the -N (non recursive) flag of svn add to make sure I can mark the
svn:ignore property before all the temporary files get added.

Also, don't forget to check in tools\nunit or the new lib folder.

The current state of Sycamore is available here.

So let's wrap up this part then. We covered some new generic principles
about projects and dependencies. We also looked at the specifics of using
NUnit. Some concrete points to take away are:

• Set DLL Names to be the same as the default namespace
• Put your Unit Tests in a separate VS project called UnitTests
• Save NUnit in your development tree in its own folder under tools
• Put all DLLs your code depends on in a top level folder called lib. The

only exceptions are system DLLs such as .NET Framework Libraries.

Part 7 - Automating Unit Tests

Last time we left our code with a dependency on a 3rd party library,
multiple internal modules (VS Projects), and a passing test. Great! But how
do we know the test passes? At the moment it requires us to have our
'interactive hat' on. It would be much better if we knew just by running our
automted build. So let's do that.

Before we start, here is the current state of our build script:

<project name="nant" default="compile"
xmlns="http://nant.sf.net/schemas/nant.xsd">
 <target name="clean">
 <delete dir="build" if="${directory::exists('build')}"/>
 </target>

 <target name="compile">
 <solution solutionfile="src\Sycamore.sln"
configuration="AutomatedDebug" />
 </target>
</project>

We're going to add a test target. Here's our first cut:

<target name="test">
 <exec program="nunit-console.exe" basedir="tools\nunit"
workingdir="build\Debug\UnitTests">
 <arg value="SherwoodForest.Sycamore.UnitTests.dll" />
 </exec>
</target>

Here we are using an <exec> task to run the NUnit Console application that's
already in our development tree (that was handy, wasn't it? That's why we
left all the NUnit binaries in our tree.) Some projects will use the <nunit> or
<nunit2> tasks to run their tests from a build script, but this requires your
version of NAnt and version of NUnit being in sync. Personally, I think the
<exec> call looks pretty clean so I'm happy to use that rather than the
tighter NUnit integration. And it means that later on if we update one of
these 2 tools we don't have to worry about breaking this part of our build
script.

The slightly tricky thing here is getting our directory specifications right.
<exec>'s basedir attribute is the location of the actual .exe we want to run,
and workingdir is the directory we want to run the application in. What
might catch you out is that workingdir is relative to your NAnt base
directory, not to the basedir attribute in the task specification.

Try running this target by entering go test from a command prompt in the
project root. Did it work? What if you try go clean test ? The problem is that
we need to compile our code before we test our code. NAnt supports this

kind of problem through the depends target attribute and <call> task. Now
we are entering the realm of much disagreement between build script
developers. :) Which is the best option? And how should it be used? If you're
new to NAnt, you'll probably want to skip the next few paragraphs.

depends specifies that for a target to run, all the targets in the depends list
must have all run already. If they haven't, they will be run first, and then
the requested target will run. <call> is much more like a traditional
procedure call. So surely <call> is the best option, since we all know about
procedure calls, right? Well, maybe, but the problem is that depends is
really quite a clean way of writing things, especially when our script has
multiple entry points. Also, traditionally, the behaviour of 'properties' have
been a little strange when using <call>. depends though can get messy if
every target has 7 different dependencies.

So, for better or worse, here's my current advice on this subject:

1. Use depends as the primary way of defining flow in your build script.

2. If a target has a depends value, don't give it a body. In other words a
target should have task definitions, or dependencies, but not both.
This is to try and get away from the 'dependency explosion' that Ant /
NAnt scripts tend towards.

3. Use <call> only for the equivalent of an extract method refactoring.

<call>ed targets should never have dependencies. Think very
carefully about properties when using <call>.

We'll put this hot potato back on the fire now.

(Paragraph skippers, join back in here.) So back to our test target. What we
want to say is that running the unit tests depends on compiling the code. So
we'll add the attribute depends="compile" to the test target tag.

<target name="test" depends="compile" />
 <exec program="nunit-console.exe" basedir="tools\nunit"
workingdir="build\Debug\UnitTests">
 <arg value="SherwoodForest.Sycamore.UnitTests.dll" />
 </exec>
</target>

Now we're mixing up our dependencies and tasks though, breaking rule 2
above. We'll use an extract dependency target refactoring to split the
target into 2 (note the second dependency on the test target):

<target name="test" depends="compile, run-unit-tests"
 description="Compile and Run Tests" />

<target name="run-unit-tests">

 <exec program="nunit-console.exe" basedir="tools\nunit"
workingdir="build\Debug\UnitTests">
 <arg value="SherwoodForest.Sycamore.UnitTests.dll" />
 </exec>
</target>

There's something else we've done here - we've added a description to the
test target. This is important - you should use the convention that targets
with a description value are runnable by the user. If a user tries running a
target without a description then that's down to them - they should be
aware that the script may fail since dependencies have not been run. Users
can easily see all the 'public' targets in a build script by doing go -
projecthelp (the 'main' targets as NAnt calls them are our public targets.)

OK, we can run our tests, but where are the results? What we'd actually like
is to use NUnit's XML output so that results can be picked up by another
process, such as CruiseControl.NET. Let's put this XML output somewhere in
the build folder, since its another one of our build artifacts. We'll update
the run-unit-tests target as follows:

<target name="run-unit-tests">
 <mkdir dir="build\test-reports" />
 <exec program="nunit-console.exe" basedir="tools\nunit"
workingdir="build\Debug\UnitTests">
 <arg value="SherwoodForest.Sycamore.UnitTests.dll" />
 <arg value="/xml:..\..\test-reports\UnitTests.xml" />
 </exec>
</target>

We used the /xml: parameter for NUnit, and made sure the report output
directory already existed.

One more thing, and then we'll be done. We already introduced the idea of
a build script refactoring above when we split-up the test target. If you
look at the current state of the build script though, you'll see there's plenty
of scope for another refactoring - 'introduce variable', or introduce script
property as we'll call it in the build script world. Look at all those places
where we use the folder name build. Lets put that in a script property
called build.dir. Now our script looks like:

<project name="nant" default="test"
xmlns="http://nant.sf.net/schemas/nant.xsd">
 <property name="build.dir" value="build" />

 <!-- User targets -->
 <target name="test" depends="compile, run-unit-tests"
 description="Compile and Run Tests" />

 <target name="clean" description="Delete Automated Build
artifacts">
 <delete dir="${build.dir}"
if="${directory::exists(property::get-value('build.dir'))}"/>

 </target>

 <target name="compile" description="Compiles using the
AutomatedDebug Configuration">
 <solution solutionfile="src\Sycamore.sln"
configuration="AutomatedDebug" />
 </target>

 <!-- Internal targets -->
 <target name="run-unit-tests">
 <mkdir dir="${build.dir}\test-reports" />
 <exec program="nunit-console.exe" basedir="tools\nunit"
workingdir="${build.dir}\Debug\UnitTests">
 <arg value="SherwoodForest.Sycamore.UnitTests.dll"
/>
 <arg value="/xml:..\..\test-reports\UnitTests.xml"
/>
 </exec>
 </target>
</project>

A lot of people will introduce a script level property whenever they
introduce a new directory, file, etc. I advise you not to do this in your build
script development since (I think) it hinders maintainablity. Treat your build
script like well maintained code - do the simplest thing that works, but
refactor mercilessly. In terms of introduce script property you should really
only be doing it once the same piece of information is used by multiple
targets. For example, a lot of people would introduce a src.dir property out
of principle, and in our case it would have the value src. But what would
that gain us? In our build script we only ever use that directory name once,
so its simpler just to leave it as a literal usage in the call to <solution>.

Notice in the last example we also added descriptions to all the targets we
want to be public, and split the file up into (effectively) public and private
targets. XML is not the cleanest language to develop in, but by thinking
about simplicity and readabilty, you can make your build scripts more
maintainable.

To summarise this part:

• Use the <exec> task to call NUnit within your build script.
• Use targets that just specify dependencies to create flow within your

build script.
• Don't use dependencies with targets that specify tasks
• Split your targets into 'public' and 'private' targets by giving public

targets a description.
• Use build script refactorings to simplify the structure of your NAnt

file.
• Don't introduce unnecesssary script properties

